首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   561篇
  免费   23篇
  国内免费   2篇
测绘学   13篇
大气科学   44篇
地球物理   142篇
地质学   167篇
海洋学   90篇
天文学   69篇
综合类   3篇
自然地理   58篇
  2021年   7篇
  2020年   7篇
  2019年   10篇
  2018年   15篇
  2017年   13篇
  2016年   19篇
  2015年   20篇
  2014年   21篇
  2013年   39篇
  2012年   18篇
  2011年   21篇
  2010年   29篇
  2009年   31篇
  2008年   46篇
  2007年   28篇
  2006年   20篇
  2005年   16篇
  2004年   22篇
  2003年   13篇
  2002年   21篇
  2001年   11篇
  2000年   18篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   9篇
  1995年   10篇
  1994年   7篇
  1993年   8篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   8篇
  1982年   14篇
  1981年   12篇
  1980年   8篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1968年   1篇
  1967年   1篇
排序方式: 共有586条查询结果,搜索用时 31 毫秒
21.
We seek to identify the depth to which water is extracted by the roots in the soil. Indeed, in an isotopic steady-state condition of leaf water, transpiration introduces into the atmosphere a vapour whose isotopic signature is identical to that of root water. In the isotopic models of atmospheric general circulation, it is classically allowed that the signature of transpiration belongs to the meteoric water line. This supposes that the water taken by the roots has escaped with the evaporation of the soil and comes thus from the deep layers of the soil. At the time of experimentation carried out on maize plants (Nemours, Seine-et-Marne, France), this extraction depth was inferred from the comparison between the signature of the water measured on the level of the first internode of the stems of the plants and the isotopic profile of water in the soil. When the flow of transpiration reaches a maximum value, the plant uptakes water resulting from precipitations and which preserves its non-evaporating character after having quickly infiltrated in the deep layers of the soil. This relates to only 55% of the flux transpired by the canopy, the remainder presenting an evaporating character more or less marked according to ambient conditions. This experiment invalidates the classical hypothesis used in isotopic models of general atmospheric circulation in temperate regions. In fact, only half the amount of water vapour transpired by the canopy during the day presents a signature similar to that of the rainwater sampled in deep soil layers. To cite this article: Z. Boujamlaoui et al., C. R. Geoscience 337 (2005).  相似文献   
22.
23.
This study examines the forcing mechanisms driving long‐term carbonate accumulation and preservation in lacustrine sediments in Lake Iznik (north‐western Turkey) since the last glacial. Currently, carbonates precipitate during summer from the alkaline water column, and the sediments preserve aragonite and calcite. Based on X‐ray diffraction data, carbonate accumulation has changed significantly and striking reversals in the abundance of the two carbonate polymorphs have occurred on a decadal time scale, during the last 31 ka cal bp . Different lines of evidence, such as grain size, organic matter and redox sensitive elements, indicate that reversals in carbonate polymorph abundance arise due to physical changes in the lacustrine setting, for example, water column depth and lake mixing. The aragonite concentrations are remarkably sensitive to climate, and exhibit millennial‐scale oscillations. Extending observations from modern lakes, the Iznik record shows that the aerobic decomposition of organic matter and sulphate reduction are also substantial factors in carbonate preservation over long time periods. Lower lake levels favour aragonite precipitation from supersaturated waters. Prolonged periods of stratification and, consequently, enhanced sulphate reduction favour aragonite preservation. In contrast, prolonged or repeated exposure of the sediment–water interface to oxygen results in in situ aerobic organic matter decomposition, eventually leading to carbonate dissolution. Notably, the Iznik sediment profile raises the hypothesis that different states of lacustrine mixing lead to selective preservation of different carbonate polymorphs. Thus, a change in the entire lake water chemistry is not strictly necessary to favour the preservation of one polymorph over another. Therefore, this investigation is a novel contribution to the carbon cycle in lacustrine systems.  相似文献   
24.
Multiphase inclusions, consisting of clinopyroxene+ilmenite+apatite, occur within cumulus plagioclase grains from anorthosites in the Stillwater Complex, Montana, and in other rocks from the Middle Banded series of the intrusion. The textures and constant modal mineralogy of the inclusions indicate that they were incorporated in the plagioclase as liquid droplets that later crystallized rather than as solid aggregates. Their unusual assemblage, including a distinctive manganiferous ilmenite and the presence of baddeleyite (ZrO2), indicates formation from an unusual liquid. A process involving silicater liquid immiscibility is proposed, whereby small globules of a liquid enriched in Mg, Fe, Ca, Ti, P, REE, Zr and Mn exsolved from the main liquid that gave rise to the anorthosites, became trapped in the plagioclase, and later crystallized to form the inclusions. The immiscibility could have occurred locally within compositional boundaries around crystallizing plagioclase grains or it could have occurred pervasively throughout the liquid. It is proposed that the two immiscible liquids were analogous, n terms of their melt structures, to immiscible liquid pairs reported in the literature both in experiments and in natural basalts. For the previously reported pairs, immiscibility is between a highly polymerized liquid, typically granitic in composition, and a depolymerized liquid, typically ferrobasaltic in composition. In the case of the anorthosites, the depolymerized liquid is represented by the inclusions, and the other liquid was a highly polymerized aluminosilicate melt with a high normative plagioclase content from which the bulk of the anorthosites crystallized. Crystallization of the anorthosites from this highly polymerized liquid accounts for various distinctive textural and chemical features of the anorthosites compared to other rocks in the Stillwater Complex. A lack of correlation between P contents and chondrite-normalized rare earth element (REE) ratios of plagioclase separates indicates that the amount of apatite in the inclusions is too low to affect the REE signature of the plagioclase separates. Nevertheless, workers should use caution when attempting REE modelling studies of cumulates having low REE contents, because apatite-bearing inclusions can potentially cause problems.  相似文献   
25.
Kettle ponds in the Cape Cod National Seashore in southeastern Massachusetts differ in their evolution due to depth of the original ice block, the clay content of outwash in their drainage basins, and their siting in relation to geomorphic changes caused by sea-level rise, barrier beach formation, and saltmarsh development. Stratigraphic records of microfossil, carbon isotope, and sediment changes also document late-glacial and Holocene climatic changes.The ponds are separated into 3 groups, each of which follow different development scenarios. Group I ponds date from the late-glacial. They formed in clay-rich outwash, have perched aquifers and continuous lake sediment deposition. The earliest pollen and macrofossil assemblages in Group I pond sediments suggest tundra and spruce-willow parklands before 12 000 yr B.P., boreal forest between 12 000 and 10 500 yr B.P., bog/heath initiation and expansion during the Younger Dryas between 11 000 and 10 000 yr B.P., northern conifer forest between 10 500 and 9500 yr B.P., and establishment of the Cape oak and pitch pine barrens vegetation after 9500 yr B.P. Sedimentation rate changes suggest lowered freshwater levels between 9000 and 5000 yr B.P. caused by decreased precipitation on the Atlantic Coastal Plain. Lake sediment deposition began in the middle Holocene in Group II ponds which formed in clay-poor outwash. These ponds date from about 6000-5000 yr B.P. In these ponds sediment deposition began as sea level rose and the freshwater lens intersected the dry basins. The basal radiocarbon dates of these ponds and stable carbon isotope analyses of the pond sediments suggest a sea-level curve for Cape Cod Bay. Holocene topographic changes in upland and the landscape surrounding the ponds is reconstructed for this coastal area.Group III ponds in the late Holocene landscape of the Provincelands dunes originated as interdunal bogs about 1000 yr B.P. and became ponds more recently as water-levels increased. Peat formation in the Provincelands reflects climatic changes evident on both sides of the Atlantic region.This is the 8th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   
26.
While earthquakes generate about 90% of all tsunamis, volcanic activity, landslides, explosions, and other nonseismic phenomena can also result in tsunamis. There have been 53 000 reported deaths as a result of tsunamis generated by landslides and volcanoes. No death tolls are available for many events, but reports indicate that villages, islands, and even entire civilizations have disappeared. Some of the highest tsunami wave heights ever observed were produced by landslides. In the National Geophysical Data Center world-wide tsunami database, there are nearly 200 tsunami events in which nonseismic phenomena played a major role. In this paper, we briefly discuss a variety of nonseismic phenomena that can result in tsunamis. We discuss the magnitude of the disasters that have resulted from such events, and we discuss the potential for reducing such disasters by education and warning systems.  相似文献   
27.
28.
Distinctive uptake mechanisms of different radiotracers by red clays in seawater are elucidated from the magnitude and change of distribution coefficients (Kd) for up to 17 γ-emitting radiotracers as functions of equilibration time, suspended particle concentration and compositions of solids and seawaters. The adsorption of ionic metals onto colloids and subsequent coagulation of colloids onto larger particles are the dominant removal processes of metals in the aquatic environments of low suspended particle concentration.  相似文献   
29.
The manner in which small channels are generated, from plane beds beneath sheet flows, has been experimentally elucidated. On plane, erodible, sand beds, the transition from thin, supercritical sheet flows to the channelled condition was studied over ranges of discharge, slope, and temperature. Secondary flow of the second kind, its action facilitated by steep vertical velocity gradients in the primary flows, caused sheet-flow instability. Along junctions between neighbouring secondary cells, both either raised or lowered elements of the primary flow. In the latter case, fast surface water was lowered to the bed, causing relatively intense, local, longitudinal scour. Dislodged grains were moved divergently to either side, leaving straight, central trenches. Development of positive feedback between cells and trenches led to rapid enlargement of the latter and concomitant growth of paired levees. The resulting structures, ‘protochannels’, were themselves ephemeral, developing two types of instability associated with secondary flow of the first kind. Firstly, small deviations from bilateral symmetry were enhanced, causing evolution into meandering channels. Secondly, headcutting led to multiple tributary development and, at resulting confluences, the action of strong pairs of secondary cells led to the development of braiding channels. Because they are shortlived, protochannels are but rarely seen in nature. Their seeding is markedly temperature-sensitive, reflecting their frictional origin. The erosive power of shallow overland flow largely depends on flow-energy concentration by secondary flow, firstly into channels, then within the channels themselves. Suppression of secondary flow, as by intense raindrop bombardment, can stabilize sheet flows. In deeper water, the effects of secondary flow appear relatively less dramatic. However, even if such motion is weak, bedload divergence from attachment lines can favour entrainment locally and thus affect bed geometry. Analogy between our results and river behaviour appears close and. on continental shelves where water must often flow as sheets, structures resembling giant protochannels evidently persist.  相似文献   
30.
From 2002 through 2004, time-series sediment trap samples were collected from a depth of 410 m in Cuenca Alfonso, Bahía de La Paz, on the SW coast of the Gulf of California. The instrument recorded the impact of the local passage of hurricanes “Ignacio” (24–26 August) and “Marty” (21–23 September) in 2003. These two events accounted for 82% of the total rainfall measured in 2003, equivalent to the annual average precipitation in years without hurricanes. Mean total mass fluxes (TMFs) of 2.88 and 3.58 g m−2 d−1 were measured during the week of each hurricane as well as the following week. This may have been enough to produce a lamina in the underlying sediment with characteristics peculiar to such events. The terrigenous component was particularly abundant, with notably higher concentrations of Fe, Sc, Co and Cs and REEs. In contrast, TMFs throughout 2002–2004 (excluding the hurricane periods) averaged only 0.73 g m−2 d−1 and had a larger marine biogenic component. The extraordinary elemental fluxes during the 29 days of hurricane-influenced sedimentation represented a great proportion of the totals over an entire “normal” year: Co (67.8%) >Sc (62.6) >Fe (59.6) >Cs (53.4)>Lu (51.5)>La (51.3)>Yb (51.0)>Ce (49.5) >Tb (48.4) >Sm (44.7)>Cr (36.5) >Ca (31.0)>Eu (25.4%). The terrigenous fraction was calculated using (a) TMF minus the sum of CaCO3, biogenic silica and organic matter and (b) the ratio of Sc in the trap samples to the average in the Earth's crust. The latter was consistently smaller, but the two methods offered similar results following hurricanes (78% vs. 63%, respectively). For normal sedimentation, however, the difference method yielded values twice as large as the Sc method (58% vs. 30%) This suggests that the mineralogy of the terrigenous fraction may also vary, with unsorted dessert soil being carried to sea by the powerful flash floods associated with hurricanes. Eolian supply of particles, particularly Sc-free quartz grains, possibly from beyond the limited fluvial drainage basin, apparently dominates normal sedimentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号